Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Chemosphere ; 357: 141868, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593957

Antibiotics, as a class of environmental pollutants, pose a significant challenge due to their persistent nature and resistance to easy degradation. This study delves into modeling and optimizing conventional Fenton degradation of antibiotic sulfamethoxazole (SMX) and total organic carbon (TOC) under varying levels of H2O2, Fe2+ concentration, pH, and temperature using statistical and artificial intelligence techniques including Multiple Regression Analysis (MRA), Support Vector Regression (SVR) and Artificial Neural Network (ANN). In statistical metrics, the ANN model demonstrated superior predictive accuracy compared to its counterparts, with lowest RMSE values of 0.986 and 1.173 for SMX and TOC removal, respectively. Sensitivity showcased H2O2/Fe2+ ratio, time and pH as pivotal for SMX degradation, while in simultaneous SMX and TOC reduction, fine tuning the time, pH, and temperature was essential. Leveraging a Hybrid Genetic Algorithm-Desirability Optimization approach, the trained ANN model revealed an optimal desirability of 0.941 out of 1000 solutions which yielded a 91.18% SMX degradation and 87.90% TOC removal under following specific conditions: treatment time of 48.5 min, Fe2+: 7.05 mg L-1, H2O2: 128.82 mg L-1, pH: 5.1, initial SMX: 97.6 mg L-1, and a temperature: 29.8 °C. LC/MS analysis reveals multiple intermediates with higher m/z (242, 270 and 288) and lower m/z (98, 108, 156 and 173) values identified, however no aliphatic hydrocarbon was isolated, because of the low mineralization performance of Fenton process. Furthermore, some inorganic fragments like NH4+ and NO3- were also determined in solution. This comprehensive research enriches AI modeling for intricate Fenton-based contaminant degradation, advancing sustainable antibiotic removal strategies.


Anti-Bacterial Agents , Artificial Intelligence , Hydrogen Peroxide , Iron , Neural Networks, Computer , Sulfamethoxazole , Sulfamethoxazole/chemistry , Hydrogen Peroxide/chemistry , Anti-Bacterial Agents/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Temperature
2.
Environ Technol ; 44(12): 1782-1797, 2023 May.
Article En | MEDLINE | ID: mdl-34842066

The degradation of the chemotherapeutic drug cyclophosphamide in artificial urine was evaluated by Electrochemical Advanced Oxidation Processes (EAOP). The system consisted of an electrochemical flow reactor with a commercial DSA® electrode (nominal composition Ti / Ru0,3Ti0,7O2) and Ti-mesh cathode. In order to assess the best parameters, the effect of current density, time and flow rate were analyzed using an initial 23 factorial design. The chosen response variable was the energy efficiency to produce free chlorine species (HClO/ClO-). After obtaining the most significant factors, the Central Composite Design (CCD) was performed, where the optimum conditions were determined for the current density range (11.714 mA cm-2 and 66.57 mA cm-2), flow rate (31.33 mL min-1) and time range (19 and 37 min). Under an optimized condition, the efficiency of other combined methods (photo-assisted electrochemical, photochemical, sonoelectrochemical and photo-assisted sonoelectrochemical) was evaluated. The efficiency of degradation processes was determined by removal of Chemical Oxygen Demand (COD), creatinine and urea. Analysis by HPLC demonstrates that the cyclophosphamide was substantially removed during the treatment process of ∼77%. Based on these results, it can be observed that the coupling between electrochemical and photochemical processes is a promising alternative for the treatment of this effluent, as a marked reduction of organic matter is observed (63, 94% of creatinine, 29.62% of urea, 39.1% of TOC) and a low treatment cost ratio.


Water Pollutants, Chemical , Creatinine/analysis , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Chlorine/analysis , Chlorine/chemistry , Electrodes , Urea
3.
Water Sci Technol ; 80(5): 961-969, 2019 Sep.
Article En | MEDLINE | ID: mdl-31746803

The efficiency of electrolysis (EC/Cl2) and photo-assisted electrolysis (EC/UV/Cl2) methods, in the presence of chloride, for the abatement of real dairy waste from a producer in the Triangulo Mineiro region of Brazil, was evaluated. A complete 23 factorial design was performed for the variables time, pH and current. After determining the ideal pH, a Central Compound Design (CCD) was performed, where the applied current (533.42 mA) and treatment time (60.45 minutes) were maximized. The effluent was subsequently submitted to prolonged EC/Cl2 and EC/UV/Cl2 treatment in order to evaluate the behaviour of specific environmental parameters over time. The EC/UV/Cl2 method was more efficient than simple EC/Cl2 treatment. The EC/UV/Cl2 method resulted in a reduction of all environmental parameters investigated to levels within legal standards for effluent discharge. A relatively low cost of treatment is obtained with Energy per Order (EEO) values of 0.89 and 1.22 kWh m-3 order-1 for the EC/UV/Cl2 and EC/Cl2 treatments, respectively. The electrochemical production of free chlorine species followed by subsequent photolysis and production of radical species can convert a simple electrochemical process into an advanced oxidation process (AOP).


Water Pollutants, Chemical , Water Purification , Brazil , Chlorides , Electrolysis , Oxidation-Reduction , Waste Disposal, Fluid , Wastewater
4.
Artif Organs ; 27(5): 461-4, 2003 May.
Article En | MEDLINE | ID: mdl-12752209

Corrosion processes due to contact with the physiological environment should be avoided or minimized in orthopedic implants. Four metallic substrates frequently used as biomaterials: pure Ti, Ti-6Al-4V alloy, ASTM F138 stainless steel, and Co-Cr-Mo alloy, were coated with TiN using the physical vapor deposition (PVD) technique. These coatings have been screened by polarization curves in physiological solutions. TiN prepared by PVD is efficient as coating for stainless steel. On titanium and alloy there are no benefits concerning the corrosion resistance compared to the bare Ti-materials. TiN coatings have been screened according to ISO 10993 standard tests for biocompatibility and exhibited no cytotoxicity, dermal irritation, or acute systemic toxicity response.


Prostheses and Implants , Titanium/chemistry , Alloys , Animals , Coated Materials, Biocompatible , Corrosion , Materials Testing , Mice , Stainless Steel , Titanium/toxicity , Vitallium
...